Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 350, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514810

RESUMO

Koalas (Phascolarctos cinereus) have experienced a history of retroviral epidemics leaving their trace as heritable endogenous retroviruses (ERVs) in their genomes. A recently identified ERV lineage, named phaCin-ß, shows a pattern of recent, possibly current, activity with high insertional polymorphism in the population. Here, we investigate geographic patterns of three focal ERV lineages of increasing estimated ages, from the koala retrovirus (KoRV) to phaCin-ß and to phaCin-ß-like, using the whole-genome sequencing of 430 koalas from the Koala Genome Survey. Thousands of ERV loci were found across the population, with contrasting patterns of polymorphism. Northern individuals had thousands of KoRV integrations and hundreds of phaCin-ß ERVs. In contrast, southern individuals had higher phaCin-ß frequencies, possibly reflecting more recent activity and a founder effect. Overall, our findings suggest high ERV burden in koalas, reflecting historic retrovirus-host interactions. Importantly, the ERV catalogue supplies improved markers for conservation genetics in this endangered species.


Assuntos
Retrovirus Endógenos , Gammaretrovirus , Phascolarctidae , Infecções por Retroviridae , Humanos , Animais , Retrovirus Endógenos/genética , Phascolarctidae/genética , Infecções por Retroviridae/genética , Gammaretrovirus/genética , Sequenciamento Completo do Genoma
2.
Trends Genet ; 40(2): 149-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985317

RESUMO

Endogenous retroviruses (ERVs) are inherited genomic remains of past germline retroviral infections. Research on human ERVs has focused on medical implications of their dysregulation on various diseases. However, recent studies incorporating wildlife are yielding remarkable perspectives on long-term retrovirus-host interactions. These initial forays into broader taxonomic analysis, including sequencing of multiple individuals per species, show the incredible plasticity and variation of ERVs within and among wildlife species. This demonstrates that stochastic processes govern much of the vertebrate genome. In this review, we elaborate on discoveries pertaining to wildlife ERV origins and evolution, genome colonization, and consequences for host biology.


Assuntos
Retrovirus Endógenos , Animais , Humanos , Animais Selvagens/genética , Vertebrados/genética , Genômica , Evolução Molecular , Filogenia
3.
Cell Rep ; 42(11): 113395, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37967557

RESUMO

Traumatic brain injury (TBI) is a leading cause of chronic brain impairment and results in a robust, but poorly understood, neuroinflammatory response that contributes to the long-term pathology. We used single-nuclei RNA sequencing (snRNA-seq) to study transcriptomic changes in different cell populations in human brain tissue obtained acutely after severe, life-threatening TBI. This revealed a unique transcriptional response in oligodendrocyte precursors and mature oligodendrocytes, including the activation of a robust innate immune response, indicating an important role for oligodendroglia in the initiation of neuroinflammation. The activation of an innate immune response correlated with transcriptional upregulation of endogenous retroviruses in oligodendroglia. This observation was causally linked in vitro using human glial progenitors, implicating these ancient viral sequences in human neuroinflammation. In summary, this work provides insight into the initiating events of the neuroinflammatory response in TBI, which has therapeutic implications.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Retrovirus Endógenos , Humanos , Animais , Camundongos , Retrovirus Endógenos/genética , Doenças Neuroinflamatórias , Transcriptoma/genética , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas/patologia , Oligodendroglia/patologia , Inflamação/genética , Inflamação/patologia , Camundongos Endogâmicos C57BL
4.
Nat Commun ; 13(1): 6033, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229469

RESUMO

Endogenous retroviruses (ERVs) are inherited remnants of retroviruses that colonized host germline over millions of years, providing a sampling of retroviral diversity across time. Here, we utilize the strength of Darwin's finches, a system synonymous with evolutionary studies, for investigating ERV history, revealing recent retrovirus-host interactions in natural populations. By mapping ERV variation across all species of Darwin's finches and comparing with outgroup species, we highlight geographical and historical patterns of retrovirus-host occurrence, utilizing the system for evaluating the extent and timing of retroviral activity in hosts undergoing adaptive radiation and colonization of new environments. We find shared ERVs among all samples indicating retrovirus-host associations pre-dating host speciation, as well as considerable ERV variation across populations of the entire Darwin's finches' radiation. Unexpected ERV variation in finch species on different islands suggests historical changes in gene flow and selection. Non-random distribution of ERVs along and between chromosomes, and across finch species, suggests association between ERV accumulation and the rapid speciation of Darwin's finches.


Assuntos
Retrovirus Endógenos , Tentilhões , Passeriformes , Animais , Evolução Biológica , Equador , Retrovirus Endógenos/genética , Tentilhões/genética , Fluxo Gênico , Passeriformes/genética , Filogenia
5.
Proc Natl Acad Sci U S A ; 119(25): e2201844119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696585

RESUMO

Retroviruses have left their legacy in host genomes over millions of years as endogenous retroviruses (ERVs), and their structure, diversity, and prevalence provide insights into the historical dynamics of retrovirus-host interactions. In bioinformatic analyses of koala (Phascolarctos cinereus) whole-genome sequences, we identify a recently expanded ERV lineage (phaCin-ß) that is related to the New World squirrel monkey retrovirus. This ERV expansion shares many parallels with the ongoing koala retrovirus (KoRV) invasion of the koala genome, including highly similar and mostly intact sequences, and polymorphic ERV loci in the sampled koala population. The recent phaCin-ß ERV colonization of the koala genome appears to predate the current KoRV invasion, but polymorphic ERVs and divergence comparisons between these two lineages predict a currently uncharacterized, possibly still extant, phaCin-ß retrovirus. The genomics approach to ERV-guided discovery of novel retroviruses in host species provides a strong incentive to search for phaCin-ß retroviruses in the Australasian fauna.


Assuntos
Betaretrovirus , Retrovirus Endógenos , Interações entre Hospedeiro e Microrganismos , Phascolarctidae , Infecções por Retroviridae , Animais , Betaretrovirus/genética , Retrovirus Endógenos/genética , Evolução Molecular , Genoma , Genômica , Phascolarctidae/genética , Phascolarctidae/virologia , Infecções por Retroviridae/veterinária , Infecções por Retroviridae/virologia
6.
PLoS Genet ; 18(2): e1010011, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35134055

RESUMO

Atlantic Halibut (Hippoglossus hippoglossus) has a X/Y genetic sex determination system, but the sex determining factor is not known. We produced a high-quality genome assembly from a male and identified parts of chromosome 13 as the Y chromosome due to sequence divergence between sexes and segregation of sex genotypes in pedigrees. Linkage analysis revealed that all chromosomes exhibit heterochiasmy, i.e. male-only and female-only meiotic recombination regions (MRR/FRR). We show that FRR/MRR intervals differ in nucleotide diversity and repeat class content and that this is true also for other Pleuronectidae species. We further show that remnants of a Gypsy-like transposable element insertion on chr13 promotes early male specific expression of gonadal somatic cell derived factor (gsdf). Less than 4.5 MYA, this male-determining element evolved on an autosomal FRR segment featuring pre-existing male meiotic recombination barriers, thereby creating a Y chromosome. Our findings indicate that heterochiasmy may facilitate the evolution of genetic sex determination systems relying on linkage of sexually antagonistic loci to a sex-determining factor.


Assuntos
Proteínas de Peixes/genética , Linguado/genética , Recombinação Genética , Processos de Determinação Sexual , Animais , Elementos de DNA Transponíveis , Embrião não Mamífero , Feminino , Linguado/embriologia , Expressão Gênica , Genoma , Masculino , Meiose , Regiões Promotoras Genéticas , Sequências Repetitivas de Ácido Nucleico , Cromossomos Sexuais , Cromossomo Y
7.
Philos Trans R Soc Lond B Biol Sci ; 376(1833): 20200186, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34304594

RESUMO

It is a broadly observed pattern that the non-recombining regions of sex-limited chromosomes (Y and W) accumulate more repeats than the rest of the genome, even in species like birds with a low genome-wide repeat content. Here, we show that in birds with highly heteromorphic sex chromosomes, the W chromosome has a transposable element (TE) density of greater than 55% compared to the genome-wide density of less than 10%, and contains over half of all full-length (thus potentially active) endogenous retroviruses (ERVs) of the entire genome. Using RNA-seq and protein mass spectrometry data, we were able to detect signatures of female-specific ERV expression. We hypothesize that the avian W chromosome acts as a refugium for active ERVs, probably leading to female-biased mutational load that may influence female physiology similar to the 'toxic-Y' effect in Drosophila males. Furthermore, Haldane's rule predicts that the heterogametic sex has reduced fertility in hybrids. We propose that the excess of W-linked active ERVs over the rest of the genome may be an additional explanatory variable for Haldane's rule, with consequences for genetic incompatibilities between species through TE/repressor mismatches in hybrids. Together, our results suggest that the sequence content of female-specific W chromosomes can have effects far beyond sex determination and gene dosage. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.


Assuntos
Aves/genética , Retrovirus Endógenos/fisiologia , Taxa de Mutação , Cromossomos Sexuais , Animais , Aves/virologia , Feminino , Fertilidade , Masculino , Fatores Sexuais , Especificidade da Espécie
8.
Commun Biol ; 4(1): 795, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172814

RESUMO

The underlying molecular mechanisms that determine long day versus short day breeders remain unknown in any organism. Atlantic herring provides a unique opportunity to examine the molecular mechanisms involved in reproduction timing, because both spring and autumn spawners exist within the same species. Although our previous whole genome comparisons revealed a strong association of TSHR alleles with spawning seasons, the functional consequences of these variants remain unknown. Here we examined the functional significance of six candidate TSHR mutations strongly associated with herring reproductive seasonality. We show that the L471M missense mutation in the spring-allele causes enhanced cAMP signaling. The best candidate non-coding mutation is a 5.2 kb retrotransposon insertion upstream of the TSHR transcription start site, near an open chromatin region, which is likely to affect TSHR expression. The insertion occurred prior to the split between Pacific and Atlantic herring and was lost in the autumn-allele. Our study shows that strongly associated coding and non-coding variants at the TSHR locus may both contribute to the regulation of seasonal reproduction in herring.


Assuntos
Peixes/fisiologia , Receptores da Tireotropina/genética , Alelos , Animais , Oceano Atlântico , Sequência Conservada , Haplótipos , Mutação , Receptores da Tireotropina/fisiologia , Reprodução/fisiologia , Estações do Ano , Transdução de Sinais , Tireotropina Subunidade beta/genética
9.
Virus Evol ; 7(1): veaa083, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33859827

RESUMO

Retroviruses have infiltrated vertebrate germlines for millions of years as inherited endogenous retroviruses (ERVs). Mammalian genomes host large numbers of ERVs and transposable elements (TEs), including retrotransposons and DNA transposons, that contribute to genomic innovation and evolution as coopted genes and regulators of diverse functions. To explore features distinguishing coopted ERVs and TEs from other integrations, we focus on the potential role of ZBED6 and repeated ERV domestication as repurposed Syncytin genes. The placental mammal-specific ZBED6 is a DNA transposon-derived transcription regulator and we demonstrate that its binding motifs are associated with distinct Syncytins and that ZBED6 binding motifs are 2- to 3-fold more frequent in ERVs than in flanking DNA. Our observations suggest that ZBED6 could contribute an extended regulatory role of genomic expression, utilizing ERVs as platforms for genomic innovation and evolution.

10.
EMBO J ; 40(9): e106423, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33644903

RESUMO

Endogenous retroviruses (ERVs) make up a large fraction of mammalian genomes and are thought to contribute to human disease, including brain disorders. In the brain, aberrant activation of ERVs is a potential trigger for an inflammatory response, but mechanistic insight into this phenomenon remains lacking. Using CRISPR/Cas9-based gene disruption of the epigenetic co-repressor protein Trim28, we found a dynamic H3K9me3-dependent regulation of ERVs in proliferating neural progenitor cells (NPCs), but not in adult neurons. In vivo deletion of Trim28 in cortical NPCs during mouse brain development resulted in viable offspring expressing high levels of ERVs in excitatory neurons in the adult brain. Neuronal ERV expression was linked to activated microglia and the presence of ERV-derived proteins in aggregate-like structures. This study demonstrates that brain development is a critical period for the silencing of ERVs and provides causal in vivo evidence demonstrating that transcriptional activation of ERV in neurons results in an inflammatory response.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encefalite/genética , Retrovirus Endógenos/genética , Deleção de Genes , Proteína 28 com Motivo Tripartido/genética , Animais , Encéfalo/imunologia , Encéfalo/virologia , Sistemas CRISPR-Cas , Células Cultivadas , Encefalite/imunologia , Encefalite/virologia , Retrovirus Endógenos/imunologia , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos , Ativação Transcricional
11.
Mob DNA ; 10: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467598

RESUMO

BACKGROUND: Henny feathering in chickens is determined by a dominant mutation that transforms male-specific plumage to female-like plumage. Previous studies indicated that this phenotype is caused by ectopic expression in skin of CYP19A1 encoding aromatase that converts androgens to estrogen and thereby inhibits the development of male-specific plumage. A long terminal repeat (LTR) from an uncharacterized endogenous retrovirus (ERV) insertion was found in an isoform of the CYP19A1 transcript from henny feathering chicken. However, the complete sequence and the genomic position of the insertion were not determined. RESULTS: We used publicly available whole genome sequence data to determine the flanking sequences of the ERV, and then PCR amplified the entire insertion and sequenced it using Nanopore long reads and Sanger sequencing. The 7524 bp insertion contains an intact endogenous retrovirus that was not found in chickens representing 31 different breeds not showing henny feathering or in samples of the ancestral red junglefowl. The sequence shows over 99% sequence identity to the avian leukosis virus ev-1 and ev-21 strains, suggesting a recent integration. The ERV 3'LTR, containing a powerful transcriptional enhancer and core promoter with TATA box together with binding sites for EFIII and Ig/EBP inside the CYP19A1 5' untranslated region, was detected partially in an aromatase transcript, which present a plausible explanation for ectopic expression of aromatase in non-ovarian tissues underlying the henny feathering phenotype. CONCLUSIONS: We demonstrate that the henny feathering allele harbors an insertion of an intact avian leukosis virus at the 5'end of CYP19A1. The presence of this ERV showed complete concordance with the henny feathering phenotype both within a pedigree segregating for this phenotype and across breeds.

12.
Genes (Basel) ; 10(2)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791656

RESUMO

Retroviruses have invaded vertebrate hosts for millions of years and left an extensive endogenous retrovirus (ERV) record in the host genomes, which provides a remarkable source for an evolutionary perspective on retrovirus-host associations. Here we identified ERV variation across whole-genomes from two chicken lines, derived from a common founder population subjected to 50 years of bi-directional selection on body weight, and a distantly related domestic chicken line as a comparison outgroup. Candidate ERV loci, where at least one of the chicken lines indicated distinct differences, were analyzed for adjacent host genomic landscapes, selective sweeps, and compared by sequence associations to reference assembly ERVs in phylogenetic analyses. Current data does not support selection acting on specific ERV loci in the domestic chicken lines, as determined by presence inside selective sweeps or composition of adjacent host genes. The varying ERV records among the domestic chicken lines associated broadly across the assembly ERV phylogeny, indicating that the observed insertion differences result from pre-existing and segregating ERV loci in the host populations. Thus, data suggest that the observed differences between the host lineages are best explained by substantial standing ERV variation within host populations, and indicates that even truncated, presumably old, ERVs have not yet become fixed in the host population.


Assuntos
Galinhas/genética , Retrovirus Endógenos/genética , Evolução Molecular , Polimorfismo Genético , Animais , Galinhas/virologia , Retrovirus Endógenos/classificação , Genoma , Filogenia
13.
Proc Natl Acad Sci U S A ; 115(43): 11012-11017, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297425

RESUMO

Although recent advances in sequencing and computational analyses have facilitated use of endogenous retroviruses (ERVs) for deciphering coevolution among retroviruses and their hosts, sampling effects from different host populations present major challenges. Here we utilize available whole-genome data from wild and domesticated European rabbit (Oryctolagus cuniculus sp.) populations, sequenced as DNA pools by paired-end Illumina technology, for identifying segregating reference as well as nonreference ERV loci, to reveal their variation along the host phylogeny and domestication history. To produce new viruses, retroviruses must insert a proviral DNA copy into the host nuclear DNA. Occasional proviral insertions into the host germline have been passed down through generations as inherited ERVs during millions of years. These ERVs represent retroviruses that were active at the time of infection and thus present a remarkable record of historical virus-host associations. To examine segregating ERVs in host populations, we apply a reference library search strategy for anchoring ERV-associated short-sequence read pairs from pooled whole-genome sequences to reference genome assembly positions. We show that most ERVs segregate along host phylogeny but also uncover radiation of some ERVs, identified as segregating loci among wild and domestic rabbits. The study targets pertinent issues regarding genome sampling when examining virus-host evolution from the genomic ERV record and offers improved scope regarding common strategies for single-nucleotide variant analyses in host population comparative genomics.


Assuntos
Animais Domésticos/virologia , Retrovirus Endógenos/genética , Genoma Viral/genética , Especificidade de Hospedeiro/genética , Animais , Hibridização Genômica Comparativa/métodos , DNA/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Coelhos
14.
Cell Rep ; 18(1): 1-11, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052240

RESUMO

Endogenous retroviruses (ERVs), which make up 8% of the human genome, have been proposed to participate in the control of gene regulatory networks. In this study, we find a region- and developmental stage-specific expression pattern of ERVs in the developing human brain, which is linked to a transcriptional network based on ERVs. We demonstrate that almost 10,000, primarily primate-specific, ERVs act as docking platforms for the co-repressor protein TRIM28 in human neural progenitor cells, which results in the establishment of local heterochromatin. Thereby, TRIM28 represses ERVs and consequently regulates the expression of neighboring genes. These results uncover a gene regulatory network based on ERVs that participates in control of gene expression of protein-coding transcripts important for brain development.


Assuntos
Retrovirus Endógenos/genética , Redes Reguladoras de Genes , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Proteína 28 com Motivo Tripartido/metabolismo , Encéfalo/embriologia , Encéfalo/virologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Fases de Leitura Aberta/genética , Ligação Proteica , Ativação Transcricional/genética , Regulação para Cima/genética
15.
Elife ; 52016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27138043

RESUMO

Ecological adaptation is of major relevance to speciation and sustainable population management, but the underlying genetic factors are typically hard to study in natural populations due to genetic differentiation caused by natural selection being confounded with genetic drift in subdivided populations. Here, we use whole genome population sequencing of Atlantic and Baltic herring to reveal the underlying genetic architecture at an unprecedented detailed resolution for both adaptation to a new niche environment and timing of reproduction. We identify almost 500 independent loci associated with a recent niche expansion from marine (Atlantic Ocean) to brackish waters (Baltic Sea), and more than 100 independent loci showing genetic differentiation between spring- and autumn-spawning populations irrespective of geographic origin. Our results show that both coding and non-coding changes contribute to adaptation. Haplotype blocks, often spanning multiple genes and maintained by selection, are associated with genetic differentiation.


Assuntos
Adaptação Biológica , Peixes/genética , Variação Genética , Animais , Oceano Atlântico , Peixes/classificação , Peixes/fisiologia , Genética Populacional , Genômica , Águas Salinas , Água do Mar
16.
PLoS One ; 10(9): e0139080, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413905

RESUMO

After performing de novo transcript assembly of >1 billion RNA-Sequencing reads obtained from 22 samples of different Norway spruce (Picea abies) tissues that were not surface sterilized, we found that assembled sequences captured a mix of plant, lichen, and fungal transcripts. The latter were likely expressed by endophytic and epiphytic symbionts, indicating that these organisms were present, alive, and metabolically active. Here, we show that these serendipitously sequenced transcripts need not be considered merely as contamination, as is common, but that they provide insight into the plant's phyllosphere. Notably, we could classify these transcripts as originating predominantly from Dothideomycetes and Leotiomycetes species, with functional annotation of gene families indicating active growth and metabolism, with particular regards to glucose intake and processing, as well as gene regulation.


Assuntos
Fungos/genética , Picea/genética , Picea/microbiologia , Transcriptoma/genética , Composição de Bases/genética , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Bioinformatics ; 31(23): 3830-1, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26249815

RESUMO

UNLABELLED: High-throughput genotyping and sequencing technologies facilitate studies of complex genetic traits and provide new research opportunities. The increasing popularity of genome-wide association studies (GWAS) leads to the discovery of new associated loci and a better understanding of the genetic architecture underlying not only diseases, but also other monogenic and complex phenotypes. Several softwares are available for performing GWAS analyses, R environment being one of them. RESULTS: We present cgmisc, an R package that enables enhanced data analysis and visualization of results from GWAS. The package contains several utilities and modules that complement and enhance the functionality of the existing software. It also provides several tools for advanced visualization of genomic data and utilizes the power of the R language to aid in preparation of publication-quality figures. Some of the package functions are specific for the domestic dog (Canis familiaris) data. AVAILABILITY AND IMPLEMENTATION: The package is operating system-independent and is available from: https://github.com/cgmisc-team/cgmisc CONTACT: marcin.kierczak@imbim.uu.se. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Gráficos por Computador , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Software , Animais , Cães , Genótipo , Humanos , Perda de Heterozigosidade , Fenótipo
18.
Cell Rep ; 10(1): 20-8, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25543143

RESUMO

TRIM28 is a corepressor that mediates transcriptional silencing by establishing local heterochromatin. Here, we show that deletion of TRIM28 in neural progenitor cells (NPCs) results in high-level expression of two groups of endogenous retroviruses (ERVs): IAP1 and MMERVK10C. We find that NPCs use TRIM28-mediated histone modifications to dynamically regulate transcription and silencing of ERVs, which is in contrast to other somatic cell types using DNA methylation. We also show that derepression of ERVs influences transcriptional dynamics in NPCs through the activation of nearby genes and the expression of long noncoding RNAs. These findings demonstrate a unique dynamic transcriptional regulation of ERVs in NPCs. Our results warrant future studies on the role of ERVs in the healthy and diseased brain.


Assuntos
Retrovirus Endógenos/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Transcrição Gênica , Animais , Metilação de DNA/genética , Células-Tronco Embrionárias/virologia , Retrovirus Endógenos/patogenicidade , Regulação da Expressão Gênica no Desenvolvimento , Heterocromatina/genética , Histonas/metabolismo , Humanos , Camundongos , Neurônios/virologia , Proteínas Nucleares/biossíntese , Proteínas Repressoras/biossíntese , Células-Tronco/metabolismo , Células-Tronco/virologia , Proteína 28 com Motivo Tripartido
19.
Proc Natl Acad Sci U S A ; 112(2): 464-9, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25535393

RESUMO

Although extensive research has demonstrated host-retrovirus microevolutionary dynamics, it has been difficult to gain a deeper understanding of the macroevolutionary patterns of host-retrovirus interactions. Here we use recent technological advances to infer broad patterns in retroviral diversity, evolution, and host-virus relationships by using a large-scale phylogenomic approach using endogenous retroviruses (ERVs). Retroviruses insert a proviral DNA copy into the host cell genome to produce new viruses. ERVs are provirus insertions in germline cells that are inherited down the host lineage and consequently present a record of past host-viral associations. By mining ERVs from 65 host genomes sampled across vertebrate diversity, we uncover a great diversity of ERVs, indicating that retroviral sequences are much more prevalent and widespread across vertebrates than previously appreciated. The majority of ERV clades that we recover do not contain known retroviruses, implying either that retroviral lineages are highly transient over evolutionary time or that a considerable number of retroviruses remain to be identified. By characterizing the distribution of ERVs, we show that no major vertebrate lineage has escaped retroviral activity and that retroviruses are extreme host generalists, having an unprecedented ability for rampant host switching among distantly related vertebrates. In addition, we examine whether the distribution of ERVs can be explained by host factors predicted to influence viral transmission and find that internal fertilization has a pronounced effect on retroviral colonization of host genomes. By capturing the mode and pattern of retroviral evolution and contrasting ERV diversity with known retroviral diversity, our study provides a cohesive framework to understand host-virus coevolution better.


Assuntos
Retrovirus Endógenos/genética , Evolução Molecular , Retroviridae/genética , Vertebrados/genética , Vertebrados/virologia , Animais , Ecossistema , Retrovirus Endógenos/patogenicidade , Retrovirus Endógenos/fisiologia , Variação Genética , Genoma Viral , Genômica , Especificidade de Hospedeiro/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Filogenia , Retroviridae/patogenicidade , Retroviridae/fisiologia
20.
Proc Natl Acad Sci U S A ; 110(50): 20146-51, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277832

RESUMO

Genomic data provide an excellent resource to improve understanding of retrovirus evolution and the complex relationships among viruses and their hosts. In conjunction with broad-scale in silico screening of vertebrate genomes, this resource offers an opportunity to complement data on the evolution and frequency of past retroviral spread and so evaluate future risks and limitations for horizontal transmission between different host species. Here, we develop a methodology for extracting phylogenetic signal from large endogenous retrovirus (ERV) datasets by collapsing information to facilitate broad-scale phylogenomics across a wide sample of hosts. Starting with nearly 90,000 ERVs from 60 vertebrate host genomes, we construct phylogenetic hypotheses and draw inferences regarding the designation, host distribution, origin, and transmission of the Gammaretrovirus genus and associated class I ERVs. Our results uncover remarkable depths in retroviral sequence diversity, supported within a phylogenetic context. This finding suggests that current infectious exogenous retrovirus diversity may be underestimated, adding credence to the possibility that many additional exogenous retroviruses may remain to be discovered in vertebrate taxa. We demonstrate a history of frequent horizontal interorder transmissions from a rodent reservoir and suggest that rats may have acted as important overlooked facilitators of gammaretrovirus spread across diverse mammalian hosts. Together, these results demonstrate the promise of the methodology used here to analyze large ERV datasets and improve understanding of retroviral evolution and diversity for utilization in wider applications.


Assuntos
Evolução Molecular , Variação Genética , Interações Hospedeiro-Patógeno/genética , Filogenia , Retroviridae/genética , Vertebrados/genética , Animais , Sequência de Bases , Transmissão de Doença Infecciosa , Camundongos , Dados de Sequência Molecular , Ratos , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...